%--Paired Delimiters--
    $
    \newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
    \newcommand{\ang}[1]{\left\langle #1 \right\rangle}
    \newcommand{\bkt}[1]{\left\lbrack #1 \right\rbrack}
    \newcommand{\nor}[1]{\left\lVert #1 \right\rVert}
    \newcommand{\pth}[1]{\left( #1 \right)}
    \newcommand{\set}[1]{\left\lbrace #1 \right\rbrace}
    \newcommand{\abset}[1]{\abs{\set{#1}}}
    \newcommand{\ptset}[1]{\pth{\set{#1}}}
    $
    %--Operators--
    $
    \newcommand{\grad}{\nabla}
    \newcommand{\La}{\Delta}
    \renewcommand{\div}{\operatorname{div}}
    \newcommand{\curl}{\operatorname{curl}}
    \newcommand{\tr}{\operatorname{tr}}
    \newcommand{\Hess}{\operatorname{Hess}}
    \newcommand{\mm}{\mathcal{M}}
    \newcommand{\inv}{^{-1}}
    \newcommand{\tensor}{\otimes}
    \newcommand{\cross}{\times}
    \newcommand{\weak}[1]{\xrightharpoonup{#1}}
    $
    %--Notations--
    $
    \newcommand{\Vol}{\mathrm{Vol}}
    \newcommand{\loc}{\mathrm{loc}}
    \renewcommand{\dim}{\mathrm{dim}}
    \newcommand{\Span}{\mathrm{Span}}
    \newcommand{\diam}{\mathrm{diam}}
    \newcommand{\Id}{\mathrm{Id}}
    \newcommand{\Lip}{\mathrm{Lip}}
    \newcommand{\dist}{\mathrm{dist}}
    \newcommand{\inv}{^{-1}}
    $
    %--Algebra--
    $
    \newcommand{\hfsq}[1]{\frac{\abs{#1} ^2}{2}}
    $
    %--Sets--
    $
    \newcommand{\R}{\mathbb{R}}
    \newcommand{\RR}[1]{\R ^{#1}}
    \newcommand{\Rd}{\RR d}
    \newcommand{\Rn}{\RR n}
    \renewcommand{\S}{\mathbb{S}}
    \renewcommand{\Z}{\mathbb{Z}}
    \newcommand{\T}{\mathbb{T}}
    \newcommand{\ssubset}{\subset \subset}
    \newcommand{\spt}{\operatorname{spt}}
    \newcommand{\supp}{\operatorname{supp}}
    \newcommand{\diam}{\mathrm{diam}}
    \newcommand{\diag}{\operatorname{diag}}
    \renewcommand{\dim}{\mathrm{dim}}
    \newcommand{\dimH}{\mathrm{dim} _\mathcal{H}}
    \newcommand{\Sing}{\mathrm{Sing}}
    \newcommand{\Vol}{\mathrm{Vol}}
    \newcommand{\inds}[1]{\mathbf1_{\set{#1}}}
    \newcommand{\ind}[1]{\mathbf1_{#1}}
    $
    
    %--Summations--
    $
    \newcommand{\SUM}[3]{\sum \cnt{#1}{#2}{#3}}
    \newcommand{\PROD}[3]{\prod \cnt{#1}{#2}{#3}}
    \newcommand{\cnt}[3]{ _{#1 = #2} ^{#3} }
    \newcommand{\seq}[2]{\set{#1 _{#2}} _{#2}}
    \newcommand{\seqi}[2]{\set{#1 _{#2}} \cnt{#2}1i}
    $
    %--Superscript and Subscript
    $
    \newcommand{\pp}[1]{^{(#1)}}
    \newcommand{\bp}[1]{_{(#1)}}
    \newcommand{\pps}[2][1]{^{#2 + #1}}
    \newcommand{\bps}[2][1]{_{#2 + #1}}
    \newcommand{\pms}[2][1]{^{#2 - #1}}
    \newcommand{\bms}[2][1]{_{#2 - #1}}
    $
    %--Notations--
    $
    \newcommand{\loc}{\mathrm{loc}}
    \newcommand{\Span}{\operatorname{Span}}
    \newcommand{\argmin}{\operatorname{argmin}}
    \newcommand{\argmax}{\operatorname{argmax}}
    \newcommand{\osc}{\operatorname{osc}}
    \newcommand{\Id}{\mathrm{Id}}
    \newcommand{\Lip}{\operatorname{Lip}}
    \newcommand{\Leb}{\operatorname{Leb}}
    \newcommand{\PV}{\mathrm{P.V.}}
    \newcommand{\dist}{\operatorname{dist}}
    \newcommand{\at}[1]{\bigr\rvert _{#1}}
    \newcommand{\At}[1]{\biggr\rvert _{#1}}
    \newcommand{\half}{\frac12}
    $
    %--Text--
    $
    \newcommand{\inn}{\text{ in }}
    \newcommand{\onn}{\text{ on }}
    \renewcommand{\ae}{\text{ a.e. }}
    \newcommand{\st}{\text{ s.t. }}
    \newcommand{\forr}{\text{ for }}
    \newcommand{\as}{\text{ as }}
    $
    %--Differential--
    $
    \newcommand{\d}{\mathop{\kern0pt\mathrm{d}}\!{}}
    \newcommand{\dt}{\d t}
    \newcommand{\dx}{\d x}
    \newcommand{\dy}{\d y}
    \newcommand{\ptil}{\partial}
    \newcommand{\pt}{\ptil _t}
    \newcommand{\pfr}[2]{\frac{\partial #1}{\partial #2}}
    \newcommand{\dfr}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}}
    \newcommand{\ddt}{\dfr{}t}
    \newcommand{\pthf}[2]{\pth{\frac{#1}{#2}}}
    $
    
    %--Integral--
    $
    \newcommand{\intR}{\int _0 ^\infty}
    \newcommand{\intRn}{\int _{\Rn}}
    \newcommand{\intRd}{\int _{\Rd}}
    \newcommand{\fint}{-\!\!\!\!\!\!\int}
    \newcommand{\intset}[1]{\int _{\set{#1}}}
    $
    %--Greek--
    $
    \newcommand{\e}{\varepsilon}
    \newcommand{\vp}{\varphi}
    $
    %--Norm--
    $
    \newcommand{\nmL}[2]{\nor{#2} _{L ^#1}}
    $
  
Mandelbrot Set
2014, August 25
  This is the first program I wrote with Processing. It can draw Mandelbrot set in a simple way. You can press the mouse button to zoom in or out, and change the speed with your keyboard. Mandelbrot set is the set of $c$’s which its related series
\[\begin{align*}
z _c (0) &= 1, \\
z _c (n) &= z _c (n - 1) ^2 + c, \forall n \in \mathbb{N}^*.
\end{align*}\]
converges in the complex plane. The black section in the picture is the Mandelbrot set.
Left click to zoom in, right click to zoom out.
Environment: Processing 2.1