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Literature review on the Navier—Stokes equation
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3D incompressible Navier—Stokes equation

m Velocity u(t,x) : [0,T) x R3 — R3.
m Pressure P(t,2):[0,T) x R® — R.

ou+u-Vu+ VP = Au
divu =0 (NSE)

u|t:0 = Uo

m Weak solution: u € 2/, s.t. Yoo € C°°([0,T) x R3), divp = 0,
supp p CC R3 x [0,7T),

T
/ —8t90-u—(u-V<p)'u+Vs0-Vudxdt=/ UO'SD‘t:odx'
0o Jrs RS
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3D Incompressible Navier—Stokes equation

m Leray—Hopf solution: a weak solution
we L2(0,T; H' (R)) 1 Cy ([0, T); L*(R?)),

with energy inequality V7 € (0,7),

1 T 1
/ |u(7’,m)2d11:+/ / |Vu|? dz dt < / |luo|? dzz.
2 R3 0 R3 2 R3

m Suitable weak solution: a Leray—Hopf solution with generalized energy
inequality in the sense of distribution, V¢ € (0,7) a.e.,

2 2 12
at“; +div[u<‘u2’ —I—P>} + |Vul? - Al;‘ <0.
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Known results for suitable weak solutions

Global-in-time existence (Scheffer, 1978
Caffarelli—Kohn—Nirenberg, 1982)
Partial regularity: #1(Sing(u)) = 0
(C—K—N, 1982; Lin, 1998; Vasseur, 2007
Kukavica, 2008, 2011

Chamorro—Lemarié-Rieusset—Mayoufi, 2018)

4
m Second derivative estimate: V2u € LEIE (Constantin, 1990)

4 00
V2u e L{,~ (Lions, 1996)
4 4

V2u e L (Vasseur—Y., 2021)

a4
Higher derivative estimate: Veu € L ®"" (Choi—Vasseur, 2014)

t.x
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Known results for uniqueness/nonuniqueness

m Weak solution in a space interpolating L?L° and L{°L3, i.e.

2 3
u€ Ly Ly for some 0 < a <1,

are regular and unique (LadyZenskaya—Prodi—Serrin, 1960’s
Escauriaza—Seregin—Sverdk, 2003)
= Mild solutions are non-unique (Buckmaster—Vicol, 2019)
m Convex integration method for Euler (Bardos, De Lellis, Isett,
Széklyhidi, Titi, Wiedemann)
m Suitable solutions are non-unique (Albritton—Brué—Colombo, 2021)
m Instability construction for Euler (Vishik, 2018)
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Maximal function associated with skewed

cylinders generated by incompressible flows
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Method of blow-up along trajectories
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Parabolic cylinders

Qr = {(t,z): t € (—r?,0),z € B,(0) C R3}.

Jincheng Yang
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Parabolic cylinders along mollified flows

= Mollified flow: fix a spatial mollifier ¢ € C2°(B;

oe(z) =e3p(e7 ), G = u*y e, and let X (

=

P
A
I

=

d
e X (t, ;) = a:(t, Xc(t, 23 8)),
S

Xc(t,x;t) =x
m Parabolic cylinders along X, are “Lagrangian cylinders in Euclidean

coordinates”: given (¢, x), define

Q-(t,x) = {(t+T,X€(t,33;t+7')+z) eERxR3:(1,2) € Qs}
={(s,y) ERxR* 1t —e® <s<t|y— X.(tait) <e}.
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Skewed parabolic cylinders along trajectories

Figure: A family of skewed parabolic cylinders Qe(t, x).
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Admissible cylinder

Q.(t,z) = {(s,y) ERxR:t—e? <s<t,|y— Xc(t,a;t)| <e}.

m Assume u is divergence free, and M(Vu) € L7 for some 1 < g < oc.
Here M is the spatial maximal function.

= Fix a small universal 79 > 0, Q.(t, ) is an admissible cylinder if
][~ M(|Vu|) dy ds < noe 2.
Q< (t,x)

m Admissibility ensures that nearby flows are close.

m We will show that for a.e. (t,2) € (0,T) x R3, for ¢ sufficiently small
(depending on (t,x)), Q:(t,x) is admissible.
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Covering lemma for admissible cylinders

We show a Vitali-type covering lemma for admissible cylinders.

Lemma (Y., 2020)

Let A be an index set and let

Q= {QO‘ = Qea(t",wo‘) ca € A}

be a collection of admissible cylinders, where €, are uniformly bounded.
Then there is a pairwise disjoint sub-collection (finite or infinite)

P={Q*,Q%,...,Q,...}

such that

> [

= é ‘UaeAQa)'
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Maximal function associated with admissible cylinders

m Classical maximal function: for f € Ll (R%),

Mf(x) :=sup

fldaz.
e>0 |Bel Bs(a:)| |

m We construct a new maximal function for admissible skewed
parabolic cylinders along the trajectories of u,

Mof(t,z) = Sup{ / \f|dzdt : Q.(t, z) is admissible}.
Q&(tv‘r)

1
Qe
m We have bounds on Mg similar as M: weak-type (1, 1), strong-type

(p,p) for p > 1.
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Maximal function associated with admissible cylinders

Mof(t,x) = sup{ o /QT(tz |fldzdt : Q,(t,z) is admissible}.

Figure: Maximal function Mg f(t, x).
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Maximal function associated with admissible cylinders

Theorem (Y., 2020, to appear in Ann. Inst. Henri Poincaré (C))

There exists universal constants C,, independent of u such that

My is of strong type (00, 0), i.e. for f € L,

|MafllLe < |If|lLee-

Mo is of weak type (1,1), i.e. for f € L', A > 0, the Lebesgue
measure of superlevel set satisfies

w({(t2) - (Maf)(t.) > X)) < Sl

M is of strong type (p,p) for any 1 < p < oo, i.e. for f € LP,

IMofllee < CpllfllLe-
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Second derivatives estimate of the 3D

incompressible Navier—Stokes equation
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Main theorem

Theorem (Vasseur—Y., ARMA 2021)

Let u be a suitable weak solution in (0,00) x R with initial data ug € L?.
Then for any q > 3, K CC (0,00) x R3, there exists a constant Cy i s.t.

3
924l gy < Coe (ol + 1).

Jincheng Yang
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Proof sketch

Lemma (Smallness in quadratic norm)

Let ¢ € C°(B2) with integral 1. There exists n > 0 s.t. if u satisfies

/ ol@)ult,z)dz =0,  ae te (=2,0),

/ |Vu|? dz dt < 7,
(—2,0)x Ba

then |Au| <1 in (—1,0) x Bj.

Putting it back into global coordinate, it means if

][~ |Vu|? dedt < ne™?,
Qe(t.x)

then [Au(t,z)| <& 3.
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Proof sketch

Assume wu is a suitable weak solution in (0,7).
m For each (t,x) € (0,T) x R3, select £(t,x) such that either

f IMa(IVal)|? de dt = nfe(t, )],
Qe(t,z) (tvw)
or e(t,x) = v/t with

]g ’ |IMo(|Vu))|? dzdt < gle(t,z)]
e(t,z) LT

m In either case, |Au| < g3 by local theorem.
m ¢ % is either bounded by %MQ[MCCOVUDQ] ort2

m |Aull

4
{|Au|>t_%} €Ls.
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Improvement of local theorem

Theorem (Smallness in almost subquadratic norm)

For o > 0 small, there exists n > 0, p < 2 such that the following holds. If
u has zero mean velocity in Q1 = [—1,0] x By, and for some § > 0

2
520 ( / !Vu|pdxdt> "+8 [ [VuPdzat<y,
1 Q1

then in Q1 = [~1,0] x B
2

|Au| < 1.

v

The novelty of this theorem is that it is purely local, depends solely on the
size of Vu, with no a priori knowledge on the pressure.
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Proof of the local theorem

Vu e L, = w € LL (Constantin, 1990)

Sllwll oo 1 + (%)O‘HVUHL?- > ||wll 2+ 12— (Interpolation a = 0")

3_
u € L?‘Lg_ SuURw E L%+L§
Change of variable, let ¢ and 1/# be a pair of cut-off functions, define

v = —curl ¢#A_1(1/1w),

then v is called a “harmonic correction” of u, compactly supported,
divergence free, v =~ u, Vv = w, force =~ u ® w, pressure =~ u ® v
(Chamorro—Lemarié-Rieusset—Mayoufi, 2018).

Energy inequality = v € L°L2 N L?H}.
[@ De Giorgi iteration (Vasseur, 2007) = v € L.
Bootstrap to higher regularity of v, Au = Aw in the interior.
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Local theorem

Rescale the local theorem to the global coordinate, we have

Corollary

For a > 0 small, there exists n > 0, p < 2 such that if for some § > 0,

2
P
52 <][~ |VulP do dt) + 5][~ |Vau|? dz dt < ne™,
Qe (t,7) Qe (t,x)

then

|Au(t, )| < e7°.

v

Recall that Q.(t, z) is a skewed parabolic cylinder along the trajectories
of u ., centering at (¢, ) with radius ¢.
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Main theorem

We prove the main theorem by using a similar argument as before and
interpolating in Lorentz spaces.

Theorem

Let u be a suitable weak solution in (0,00) x R with initial data ug € L?.
Then for any q > %, K CC (0,00) x R3, there exists a constant Cy c s.t.

3
94l < Cae (ol + 1),

For regular solutions, we can bootstrap to higher regularities in vorticity,
for instance V2w € Llléz for ¢ > 1.

Jincheng Yang
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Inviscid limit problem: boundary vorticity and

layer separation
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3D incompressible Navier—Stokes equation

Consider the incompressible Navier—Stokes equation in a periodic tunnel
Q="T2x0,1]:

ou’ +u” - Vu’ + VPY =vAu”  in (0,T) x Q

diva” =0 in (0,7) x Q (NSE,)
u’ =0 on (0,7) x 082
u”|t:0 = ug in 2

We are interesting in the inviscid limit » — 0 under the condition that ug
converges to Ae; in L?(€2).
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Asymptotic limit

m It is a major open problem to know whether the limit of ©” converges
to Ae;.

m Only conditional results exist: the Kato criterion (1984) states that if,
when v — 0 and uf — Ae; in L*(Q):

T
/ / v|Vu’ 2 dzdzdt — 0,
0 v

where C), = {|]z| < Rv} U{|1 — z| < Rv} is a thin region near the
boundary with width of order O(v), then

u” — Aey, in L(0,T; L*(Q)).

m Other conditional results: the inviscid limit holds if the solution is
analytic near the boundary or if the solution possesses certain
symmetry.

Jincheng Yang Thesis Defense @ Partial regularity results for the 3D NSE 03/25/2022 28 / 43



Turbulence and layer separation

What if the limit does not hold?

Figure: Turbulence and layer separation: the case of an airfoil and in a tunnel
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Prediction of layer separation

m Formally, the asymptotic system for v = 0 is the Euler system:

u+u-Vu+VP =0 in(0,T)x

divu =0 in (0,7) x Q (E)
u-n=0 on (0,T) x 0%
u(0,-) = Aeq in Q.

m The method of convex integration shows that the solution
u(t,z) = Aey of (E) is not unique (see Székelyhidi, CRAS, 2011).
For every constant C' < 2, there exists a solution with layer separation
for T < 1/A:
[u(T) — Ae ||%2(sz) = CA’T.
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Prediction of layer separation

m Layer separation of (E):
[u(T) — Ae ||2L2(Q) = CA’T.

Question:
m Is it the biggest separation possible?

m Can we get some control of the layer separation as the level of the
Navier—Stokes equation?
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The result

Theorem (Vasseur-Y., 2021, submitted)

For d = 2,3, for every T > 0, for any Leray—Hopf solution u” to (NSE,)
in (0,T) x Q:

14 4 14
lu”(T) — Aex 720y + S lIVu 122 (0.1 x2)
< Aljuf — Aex|[72(q) + CA°T + CA?Re ' log(2 + Re),
where C > 0 is a universal constant, and

Re = A/v is the Reynolds number.
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The result

Corollary

In particular, in the inviscid limit v — 0, if u§ — Aey in L*(Q) and
u? — u in distribution up to a subsequence, then

This estimate matches the layer separation predicted by the convex
integration.
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Non-uniqueness and pattern predictability

m In general, non-uniqueness result by convex integration raised the
question of predictability: Why can we observe patterns?

The shear flow © = Ae; has an energy of A?

We prove that the layer separation has an energy of at most CA®T at
time T.

m Therefore, the perturbation stays negligible on a time span 7" < 1/A.
This is a large time for A small (small pattern).

m It predicts the lapse of time where the pattern stays predictable.
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General idea

m Maekawa and Mazzucato (The inviscid limit and boundary layers for
Navier—Stokes flows, 2018):

“Mathematically, the main difficulty in the case of the no-slip
boundary condition is the lack of a priori estimates on strong
enough norms to pass to the limit, which in turn is due to the
lack of a useful boundary condition for vorticity or pressure.”

m We show a boundary vorticity control for the Navier-Stokes equation.
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Why vorticity on the boundary?

m Growth rate of the layer separation is

1d
5 gl — Aei

= (u” — Aey, Opu”)
= —(u” — Aey,u” - Vu") — (u” — Ae1, VPY) + v(u” — Aey, Au”)
=v(u’, Au”) — v(Aey, Au")

||V |3, — A/ vwh dx
%9

m w” = curlwu” is the vorticity of u”.
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Boundary vorticity estimate for Navier—Stokes (intuition)

If we take the curl of (NSE,), we have the vorticity equation,
Ow +u-Vw=vAw+ w - Vu.

Suppose we can ignore the transport term and the boundary effect, then
the regularity we could expect for w is at best

2 2
v HV WHLI(QT)XQ VHW vu”Ll (0,T)x2) <7/“Vu HL2(OT)><Q)

(although parabolic regularization is false in L') By interpolation with

V||w\|%2((o,T)xn) < V||VUH%2((0,T)xQ)v

2
L3 (0.1)%) S V||VU||L2((0,T)xQ)-

Finally the (critical) trace theorem suggests that (cheating again)

3
) 2
Hysz L2 ((0,T)x0) S VIVl o) <0)-

Jincheng Yang Thesis Defense e Partial regularity results for the 3D NSE 03/25/2022



Boundary vorticity estimate for Navier-Stokes

Theorem (Boundary Regularity)

For any Leray—Hopf solution u” to (NSE,) in (0,T) x ) there exists a
decomposition (0,T) x 09 = |J, Q°, such that the following is true.
Define the piecewise average on boundary " : (0,T) x 092 — R by

@Y (t,x) = ][ w” dz dt, for (t,z) € Qi

Qi
Then we have

3
2

~ V|2
va 1{|@V|>max{%7,,}} Sv|[Vu HL2((O,T)><Q)‘

L3°°((0,T)x69)

Jincheng Yang
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From Boundary Vorticity to Layer Separation

m Recall that the boundary separation is related to the size of mean
vorticity

d 2 2
—||u” — Aeq = —v||Vu” —A/ vwy dx,
Gl = Aerlaq = VIVl = 4 [ v

m Integrate in time

A/ vy dz dt
00 x(0,T)

< CA39Q x (0,T)| + 1/ v’ |2 du dt
C Jaax (1)

1
< CA'T + 5u||w||§2.
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The parabolic partition

1 FH

o

2 .
Vi 0 1

N |—

A parabolic cube @ of size 4% x (27%)? is said to be suitable if it touches
the boundary 0f) and and satisfies

][ |Vau|? dz dt < co(27%) 74 (S)
2Q

for some ¢y. For each cube in the above grid that is not suitable, we
dyadically dissect it into smaller cubes till suitable.
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Local theorem

Theorem (Local theorem)

If Q is a suitable cube of radius 27,
][ |Vu|? dz dt < co(27%) 74
2Q
then the average boundary vorticity on QQ = Q N {z = 0} is

W= ][ wda'dt < ¢ (27%)72
Q

with ¢1 depending on cy.

This lemma links the interior gradient and the mean boundary vorticity at
a local level.
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Local theorem

][ |Vau|? dzdt < co(27%) 74 = ][wdx' dt < ¢;(275)72
2Q Q

|
- (9]
Q
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Thank you for your attention!
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